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Abstract

Optical polarimetry observations on La Palma, Canary Islands, during a Saharan dust
episode show dichroic extinction consistent with the presence of vertically aligned par-
ticles in the atmosphere. Modelling of the extinction together with particle orientation
indicates that the alignment could have been due to an electric field of the order of5

2 kV/m. Two alternative mechanisms for the origin of the field are examined: the effect
of reduced atmospheric conductivity and charging of the dust layer, the latter effect
being a more likely candidate. It is concluded that partial alignment may be a common
feature of Saharan dust layers. The modelling also indicates that the alignment can
significantly alter dust optical depth. This “Venetian blind effect” may have decreased10

optical thickness in the vertical direction by as much as 10% for the case reported
here.

1 Introduction

Mineral dust in the atmosphere exerts significant indirect influence on radiation by act-
ing as a source of nuclei for cloud formation. It also modifies both the shortwave15

solar radiation transmitted through to the surface and the longwave infrared radiation
emitted to space. As an absorber of longwave radiation, dust can cause local warm-
ing of the atmosphere and modify atmospheric dynamics. There is also growing evi-
dence that Saharan dust outbreaks may be reducing Atlantic hurricane activity (Evan
et al., 2006; Wu, 2007). Yet significant gaps in the understanding of its role exist, in20

terms of both global and regional influences on weather and climate (Andreae et al.,
2005; Haywood et al., 2005; Myhre et al., 2003; Yu et al., 2006; Mishchenko et al.,
2007). Consequently, much effort has been directed at the development of global-
scale measurement of aerosol properties, including both satellite and ground-based
instruments such as sun photometers and lidar (Yu et al., 2006; Dubovik et al., 2006;25

http://aeronet.gsfc.nasa.gov).
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However, existing satellite instruments may not be able to resolve the non-
uniqueness problem associated with passive aerosol retrievals (Chowdhary et al.,
2001; Mishchenko et al., 2007). In this context, polarimetry has much to offer, be-
cause multispectral, multiangle polarization measurements can uniquely recover many
relevant aerosol parameters (Chowdhary et al., 2002; Boesche et al., 2006; Li et al.,5

2007). Similar considerations have recently led to major investment in polarization-
measuring instruments for the remote sensing of clouds and aerosols: POLDER 1 and
2, PARASOL, the Research Scanning Polarimeter and the Aerosol Polarimetry Sensor
(Mishchenko et al., 2007) .

It is also accepted that the nonsphericity of mineral dusts should be taken into ac-10

count, particularly in remote sensing retrievals (Mishchenko et al., 2003; Volten et al.,
2005; Dubovik et al., 2006; Kalashnikova and Sokolik, 2002; Kahnert et al., 2005). Po-
larimetry has a special role to play here because it is very sensitive to particle shape
(Mishchenko et al., 2007; Dubovik et al., 2006; Mishchenko et al., 2002). However, po-
larimetry is also sensitive to particle orientation, a feature that has long been exploited15

in astronomy (Hough, 2007).
In this study, we report on high-sensitivity optical polarimetric observations which

indicate the presence of vertically aligned particles in the atmosphere in the Canary
Islands region, and show that the observations coincided with a Saharan dust episode.
The presence of vertically aligned particles is unexpected, because aligned atmo-20

spheric particles, such as column or plate-shaped ice crystals, are typically oriented
horizontally due to aerodynamic forces (Platt et al., 1978; Sassen and Benson, 2001).
One exception concerns electrically active regions of storm clouds within which ice
crystals are thought to align vertically, as demonstrated by polarimetric radar measure-
ments (Mendez 1969; Hendry and McCormick, 1976; Krehbiel et al., 1996; Prigent et25

al., 2005) and theoretical modeling (Weinheimer and Few, 1987). We therefore exam-
ine whether atmospheric electric fields not associated with storm clouds can produce
vertical alignment of mineral dust aerosols, and if such alignment can account for the
polarimetric observations. We also carry out a preliminary evaluation of the influence of
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the alignment on the interaction of shortwave radiation with a dust layer, and examine
whether electric fields can influence gravitational settling of Saharan dust layers.

2 Results

2.1 Polarimetry observations

The observations were carried out from 27 April 2005 to 8 May 2005 with a new high-5

sensitivity astronomical polarimeter PlanetPol, which achieves fractional polarization
sensitivities better than 10−6 with an absolute accuracy of about 1% (Hough et al.,
2006). The polarimeter was mounted on the William Herschel Telescope located on
the island of La Palma at an altitude of 2340 m. The measurements extended over
a broad band of wavelengths from 590 to 1000 nm and were of polarized flux from10

four nearby stars which normally show little polarization. The angular aperture of the
instrument was only 5′′, hence the measurement was that of extinction, and the error
due to the inclusion of any scattering in the measured flux was likely to be negligible.
The observations were screened for the presence of clouds.

It was noted that observations on the nights from 3 to 7 May were characterized by15

increased linear dichroism, manifested by excess horizontal polarization component of
transmitted light, which rose with the observation zenith angle. On 4 May the fractional
polarization increased to a value of almost 5×10−5 at the zenith angle of 56◦. In con-
trast, observations before and after that period showed polarization near the detection
level, typically ∼3×10−6. The total flux was also reduced – see Sect. 2.2.2. More-20

over, there was correlation between the magnitude of the observed polarization and
the optical depth – for details see Bailey et al. (2007)1. The excess polarization can
be interpreted as being due to an interaction of the starlight with nonspherical particles
having their long axes preferentially oriented in the vertical direction, hence causing the

1Bailey, J., Lucas, P. W., Hough, J. H., Hirst, E., Ulanowski, Z. and Tamura, M.: Polarization
of light transmitted through airborne Saharan dust, in preparation, 2007.
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vertical component of polarization to be scattered out of the observation path and/or
absorbed more strongly for non-zero zenith angles of observation. The correlation
of the observed excess polarization with the optical thickness of the dust layer is ex-
pected because dichroic polarization is an extensive property, unlike the polarization of
scattering which is an intensive one. Hence its strength increases with the amount of5

material present in the path.

2.2 Dust properties

2.2.1 Meteorological conditions

The William Herschel telescope is located at the Observatorio de Roque de Los
Muchachos on La Palma in the Canary Islands. The telescope is at an altitude of10

2340 m near the crest of a caldera, approximately 90 m below the highest point of the
mountain, which forms the bulk of the island. The altitude of the observatory puts it
above the marine mixing layer, so observations above convective clouds are possible.

Ten-day airmass back-trajectories were computed using the NOAA HYSPLIT model
with FNL meteorological data (Draxler and Rolph, 2003). The trajectories indicate that15

the airmass during the La Palma dust episode originated in the arid western Sahel and
Sahara, more specifically in Mali and Mauritania within the box 15◦ N–25◦ N, 15◦ W–
5◦ E. This region is a major source of atmospheric mineral dust (Goudie and Middleton
2001). For brevity, we will henceforth refer to the dust as Saharan dust (SD). According
to the model, the dust plume reached La Palma via an indirect route over the Atlantic20

and was at least six days old – see Fig. 1. Typically, individual trajectories terminating
in La Palma at altitudes between 2500 m and 5000 m originated near ground level in
Africa. Trajectories terminating at or below 2000 m had maritime origin and/or did not
contain ascending air masses. SD intrusions affecting mainly the free troposphere and
not the marine mixing layer (extending typically up to about 1500 m) are characteristic25

of spring and summer months at the Canary Islands (Varela et al., 2003). Transport
patterns containing anticyclonic gyration over the east Atlantic, with an SD layer under-
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cut by a trade wind inversion over the marine mixing layer, are likewise considered to
be common for SD episodes (Karyampudi et al., 1999).

Aerosol Index data obtained from the Ozone Monitoring Instrument (OMI, http://aura.
gsfc.nasa.gov/instruments/omi/index.html) showed that the Canary Islands were on
the periphery of the main bulk of the dust cloud, which was present to the south-west –5

Fig. 2. MODIS level 2 aerosol data (http://modis-atmos.gsfc.nasa.gov) showed similar
patterns, furthermore characterized by high spatial non-uniformity of aerosol optical
depth. MODIS level 2 cloud products showed the presence of some cloud cover during
the observations, but the vast majority of it was below the altitude of the observatory;
some ice phase was indicated in the vicinity of the Canary Islands prior to but not10

during the dust episode. The low clouds are consistent with the presence of the trade
wind inversion.

2.2.2 Optical depth

Optical properties of the SD layer over the Canary Islands were obtained from the
AERosol RObotic NETwork (AERONET) Cimel sunphotometer in Santa Cruz on the15

nearby island of Tenerife (http://aeronet.gsfc.nasa.gov/). This site is at an altitude of 52
m, about 180 km from La Palma. Particle size distributions, optical depth and effective
radius were retrieved using the spheroidal particle method of Dubovik et al. (2006).
Almucantar level 1.5 retrievals were cloud screened, and only sets for solar zenith
angles above 20◦, containing at least 21 measurement angles, and without anoma-20

lous distribution tails (almucantar retrieval type 0) were used for calculating daily av-
erages. Additional optical depth data was obtained from the Carlsberg Meridian Tele-
scope (http://www.ast.cam.ac.uk/∼dwe/SRF/camc.html) co-located with the polarime-
ter. It showed that the zenith extinction at 625 nm increased from a typical value of
0.09 by between 0.08 and 0.22. The optical depths derived from sun photometry and25

from the Carlsberg telescope were similar, indicating that the bulk of the dust cloud was
present at a higher altitude. We note that while it is more common to observe reduced
optical depth at the higher altitude corresponding to the William Herschel Telescope,
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comparable magnitudes at near sea level and mountaintop locations in the Canary
Islands were documented in some cases (Smirnov et al., 1998). This pattern is con-
sistent with the presence of the trade wind inversion. The two optical depth profiles are
compared with the OMI Aerosol Index in Fig. 3.

2.2.3 Size distributions5

The size distributions retrieved for the period of the dust episode showed elevated
fine and coarse particle number concentrations in comparison with the periods both
before and afterwards. The coarse mode was centered on ∼4µm size (expressed as
diameter of equivalent volume sphere) – see Fig. 4. The same distributions are plotted
by particle surface area, i.e. dA/dr to show the relative contributions to scattering and10

extinction from different sizes – see Fig. 5. On 4 May about 12% of particles by surface
area were in the 4–20µm size range in terms of the equivalent diameter.

2.3 Atmospheric electric field

In this section we examine two alternative mechanisms that can lead to the presence
of a strong electric field within a dust layer. The fair weather electric field strength is on15

average about 120 V/m in clear atmosphere near ground level and it decreases quickly
with altitude (Roble and Tzur 1986; Gringel et al., 1986). However, the presence of
aerosols, fog or haze lowers atmospheric conductivity and strengthens the electric field
locally (Cobb, 1968; Gringel et al., 1986; Brazenor and Harrison, 2005). For example,
monthly averages of fair-weather field near London exceeded 500 V/m in the first half20

of 20th century when pollution levels were high (Scrase, 1934; Harrison and Aplin,
2002), and the field gradient showed very strong negative correlation with conductivity
(Harrison and Ingram, 2005). Furthermore, these early observations revealed approxi-
mately linear relationship between air resistivity and the concentration of condensation
nuclei (Wright, 1933; Scrase, 1935). Concerning Saharan dust, more than a two-fold25

reduction of atmospheric conductivity within SD layers was observed by Gringel and
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Mühleisen (1978). The electric field within an SD layer at a 3 km high Alpine peak ex-
ceeded fair weather value by a factor of about two, while the current density remained
approximately constant (Reiter, 1992). The influence of neutral aerosols on the electric
field is a consequence of small ion scavenging by the atmospheric particles (Fuchs,
1963; Hoppel and Frick, 1986; Brazenor and Harrison, 2005). This attachment pro-5

cess creates large ions at the expense of small ions. Large ions have lower electrical
mobility and thus decrease the electrical conductivity of the atmosphere. Since the
global ionospheric potential which drives the fair weather atmospheric current is rela-
tively constant, with diurnal variation caused by changes in global thunderstorm activity
(Mühleisen, 1971; Roble and Tzur, 1986), a decrease in conductivity within the aerosol10

layer results in increased potential difference across it in accordance with Ohm’s law,
and hence in increased field gradient (Gringel et al., 1986).

Aerosols can also alter the atmospheric electric field directly if the aerosol is charged.
Dust particles colliding between themselves and with the underlying surface become
charged due to triboelectric effects (Kamra, 1972; Smirnov, 1999). This charge alone15

can produce a strong field within the dust cloud. It can be shown using Gauss’s law
that the field near the bottom of a thin, uniformly charged layer at low altitude will be ap-
proximately E = ∆zρc/ε0, where ∆z is layer thickness, ρc is spatial charge density and
ε0 permittivity of free space. Measurements of the spatial charge density within dust
clouds vary widely in magnitude; taking two examples, 3×10−10 C/m3 (Oluwafemi and20

Ette, 1974) and 3×10−8 C/m3 (Kamra, 1972), we obtain field strength values of 3 kV/m
and 300 kV/m, respectively, for a hypothetical 100 m layer. Furthermore, the fields may
be enhanced due to charge separation taking place as a result of size-dependent set-
tling rates: it appears that larger dust particles tend to be charged positively, and since
they settle out faster, a dipole can form. Whatever the mechanism, observations show25

that normal atmospheric electric fields can become substantially increased in mag-
nitude and reversed, depending on the horizontal position with respect to the cloud
(Frier, 1960; Ette, 1971). Field strengths as high as –20 kV/m have been observed at
ground level during dust storms, in some cases tens of km from the source (Kamra,
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1972; Smirnov, 1999; Harris, 1967). Similar values have been reported below vol-
canic plumes, and fields within the plumes can sometimes be high enough to initiate
lightning (see Mather and Harrison 2006 for a review). Much of recent research has
concentrated on the possibility that dust storms provide a source of electrical activ-
ity in the Martian atmosphere (Melnik and Parrot, 1998; Farrell et al., 2004), and the5

conclusions are similar to those obtained for terrestrial dust.
We will now proceed to elucidate the mechanism of electric field generation within an

uncharged aerosol layer by establishing a numerical relationship between the optical
properties of the layer and the electric field. The ionic conductivity can be described by
the equation (Gringel et al., 1986)10

σ = e−µ± n± (1)

where e− is the elementary charge, µ± is the mean ion mobility and n± the total number
concentration of positive and negative ions. Under high aerosol loading, when aerosol
attachment dominates over direct ion recombination, the ion balance equation can be
written as (Brazenor and Harrison, 2005; Harrison and Aplin, 2002)15

q = n±βN (2)

where q is the total ion (positive and negative) production rate, β is the ion-aerosol
attachment coefficient and N aerosol number concentration. In general, β depends on
aerosol particle size and for an aerosol with a size distribution N(r) Eq. (2) should be
written as20

q = n±

∞∫
0

β (r) N (r) dr = n± βeffN (3)

where βeff is the effective attachment coefficient (Hoppel and Frick, 1986). By combin-
ing Eqs. (1) and (3) we obtain

σ =
e−µ±q

βeffN
(4)
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The optical depth τ can be expressed as τ=∆zkext where ∆z is the geometric thick-
ness of the layer, kext the extinction coefficient (Mishchenko et al., 2002)

kext =

∞∫
0

sext (r)N (r)dr = s̄extN (5)

sext(r) and s̄ext are the size-dependent and effective the extinction cross-section, re-
spectively. The optical depth can therefore be written as5

τ = ∆z s̄extN. (6)

We can now eliminate N by combining (4) and (6) to obtain an equation connecting the
conductivity and optical depth of an aerosol layer

σ =
e−µ±qs̄ext∆z

βeff τ
. (7)

The atmospheric current density is determined through Ohm’s law by the magnitude of10

the ionospheric potential U and the columnar resistance Rc of the atmosphere (Gringel
et al., 1986):

J = U
/
Rc. (8)

The columnar resistance can be separated into two terms containing its fair-weather
value in the absence of aerosol Rc0 and an excess resistance ∆R due to the aerosol15

layer

Rc = Rc0 + ∆R = Rc0 + ∆z(1/σ + 1/σ0) ≈ Rc0 + ∆z/σ (9)

where σ and σ0 are mean conductivities at the altitude of the aerosol layer with and
without the aerosol, respectively, and we have assumed that σ<<σ0, as would be the
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case in the presence of a dense aerosol layer. Assuming that the aerosol layer has
large horizontal extent, Eq. (8) can now be rewritten as

J ≈ U

Rc0 + ∆z
/
σ
. (10)

The average electric field gradient E within the aerosol layer can now be calculated as

E = J
/
σ =

U
Rc0σ + ∆z

. (11)5

It now remains to substitute Eqs. (7) into (11) to provide the expression we seek, di-
rectly connecting the electric field gradient with the optical depth

E =
U

∆z
(

1 + Rc0 e−µ± q s̄ext
βeff τ

) . (12)

We should also consider the influence of surface topography on the electric field. En-
hancement of the fair weather electric field on mountaintops has previously been ob-10

served, with field strengths as high as 300 V/m (Cobb et al., 1967; Kocijan, 1998).
While extensive measurements over a mountain site in Hawaii showed field strengths
typical of flat ground (Cobb, 1968), this could be the consequence of the position of
the site nearly 800 m below the peak, where the enhancement can be cancelled out
(Tzur et al., 1985), as well as low aerosol concentration. Numerical computations for15

a gently-sloping mountain with a 7:1 diameter to height ratio give a 1.6 enhancement
factor for the electric field strength, but a comparison with the Mauna Loa observations
by Cobb (1968) indicates that the factor may be underestimated (Tzur et al., 1985).
Electrostatic theory provides three-fold field enhancement at the top of an idealized
hemispherical mountain, if homogeneous air conductivity is assumed (Schottky, 1923;20

Le Ny, 1981; Kasemir, 1977). The enhancement factor can be written for this case
as 1+2(z0/z)3 where z is the altitude above base level and z0 mountain height (hemi-
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sphere radius). By integrating this expression along a line extending from the mountain
top to a maximum altitude z1 we obtain an average enhancement factor

1
z1 − z0

z1∫
z0

(
1 + 2

(
z0
/
z
)3)dz = 1 + z0

/
z1 +

(
z0
/
z1
)2 . (13)

The average enhancement factors calculated from this formula are about 2.5 and 2.2
for a 500 m and 1000 m column, respectively, above a mountain of La Palma height5

(2.3 km). In the absence of data specific to the La Palma site we will henceforth apply
a topographic enhancement factor of two to Eq. (12) etc.

Field strengths within an aerosol layer have been calculated from Eq. (12) as a func-
tion of the geometric thickness of the layer (Fig. 6) and optical thickness (Fig. 7). The
mean ion mobility (Gringel et al., 1986) was corrected to the temperature T and pres-10

sure p at La Palma (285 K, 0.75 bar) using the Langevin rule µ±=µ±0T p0 /T0 p where
the subscript 0 refers to standard conditions to give a value µ±=1.8×10−4 m2 V−1 s−1.
The total ion production rate was taken to be q=9.8×106 m−3 s−1 and the columnar
resistance of the atmosphere Rc0=5×1016 Ωm2, a value characteristic of a mountain
site (Cobb, 1968). While the attachment coefficient is proportional to size for larger15

particles, this approximation breaks down below the radius of about 100 nm (Horrak et
al., 1998). Therefore integration with size distributions according to Eq. (3) was used to
estimate the effective value. For both the effective attachment and the effective extinc-
tion coefficients, trimodal lognormal distributions were fitted to the AERONET retrieved
ones (so as to avoid abnormal fine mode), resulting in values of βeff=4.7×10−11 m3 s−1

20

and s̄ext = 1.3×10−12 m2 (corresponding to an effective radius of 0.46µm), respectively.

2.4 Particle alignment

We consider a particle subjected to torques due to an electric field and fluid flow, both
along the vertical direction, as well as to rotational Brownian motion. The probability
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density for the alignment angle is given by Boltzmann’s law (Fuchs, 1964)

P = exp
(
−
WE +WH

kT

)
sin θ (14)

where WE and WH are potential energy contributions due to the particle’s orientation
in the electric field and in the fluid flow, respectively, k is the Boltzmann constant, T
temperature and θ particle orientation angle with respect to the vertical direction. The5

sin(θ) factor originates from integration over the azimuth orientation angle. The electric
field potential energy for a conducting prolate ellipsoid is (Fuchs, 1964; Lilienfeld, 1985)

WE = −2πε0V E2

(
cos θ2

X1
+

sin θ2

X2

)
(15)

where

X1 =

a ln
(
a +

√
b
)

√
b

− 1

/b10

X2 = a

a −
ln
(
a +

√
b
)

√
b

/2b

b=a2−1, a is the ratio of major to minor axis of the ellipsoid (aspect ratio), ε0 the di-
electric constant, V the ellipsoid volume, E the electric field strength and θ the angle
between the major axis and the field direction (vertical). Conducting rather than dielec-
tric particles are assumed because at low electric field frequencies aerosol particles15

can be considered to be conducting due to water adsorbed on their surface, even at
low humidity (Fuchs, 1964; Lilienfeld, 1985).

13215

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/7/13203/2007/acpd-7-13203-2007-print.pdf
http://www.atmos-chem-phys-discuss.net/7/13203/2007/acpd-7-13203-2007-discussion.html
http://www.egu.eu


ACPD
7, 13203–13241, 2007

Alignment of
atmospheric mineral

dust

Z. Ulanowski et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

The hydrodynamic alignment energy for an ellipsoid falling at low Reynolds number
can be calculated as (Cox, 1965; Weinheimer and Few, 1987)

WH = 29πρv2
0 D

3 |a − 1| (a + 2)2 cos θ2
/

2880 (16)

where ρ is the specific gravity of the medium (air) and D the length of the minor axis
(diameter) of the ellipsoid. The terminal velocity v0 is calculated for simplicity for a5

prolate ellipsoid in random orientation (Clift et al., 1978):

v0 = πgρ1L
3
/

6µca2 (17)

where g is the gravitational acceleration, ρ1 and L particle density and the length of
the major axis, respectively, µ the dynamic viscosity of the medium (air) and c the flow

resistance c=3πD
√
b
/

ln
(
a+

√
b
)

.10

Probability density distributions of the orientation zenith angle have been calculated
from Eq. (14) for a range of field strengths and normalized to 1 – see Fig. 8. Aspect
ratio a=1.5 was assumed, which is typical of SD (Reid et al., 2003; Kalashnikova and
Sokolik, 2002). In any case, the alignment was found not to be strongly dependent
on the aspect ratio, especially for smaller grains, where alignment due to the electric-15

field dominates. Consequently, even moderately nonspherical particles can become
aligned.

A better picture of particle alignment can be obtained by considering the influence of
particle size. Figure 9 shows the mean orientation angle of ellipsoidal particles, com-
puted for a range of field strengths, as a function of maximum particle dimension. The20

most interesting feature of the plot is the dominance of electric alignment over thermal
fluctuations and aerodynamic alignment for a range of particle sizes, dependent on the
field but centered on about 15µm maximum particle dimension. For the 1600 kV/m
field strength particles above ≈5 µm in maximum dimension (2µm equivalent-volume
sphere radius) show significant alignment.25
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2.5 Extinction modelling

Calculations of polarized extinction were carried out for prolate spheroids of aspect
ratio a=3/2 by computing the extinction matrix using the T-matrix method (Mishchenko,
2000). The calculation wavelength was 780 nm and the refractive index was taken
to be 1.46–i0.006 – average value derived from sun photometer retrievals but also5

characteristic of silica-dominated mineral dust. Single scattering was assumed, i.e.
the optical thickness was calculated as τ ≈

∑
K11, and the fractional polarization was

calculated as the normalized second Stokes parameter Q≈–
∑

K12 with respect to the
vertical reference plane, where

∑
Ki j are elements of the extinction matrix summed

over all particles in the (inclined) aerosol column - taking into account the airmass10

corresponding to the given zenith angle. To obtain this simplification advantage was
taken of the fact that the light source was unpolarized,

∑
K12<< 1, and the particles

were axisymmetric (Mishchenko et al., 2002; Whitney and Wolff, 2002). The AERONET
derived size distribution for 4 May 2005 (Figs. 4 and 5) was used for the summation,
except that it was converted to number distribution and interpolated to give equivalent-15

volume radius bins with equal spacing of 0.1µm. Fixed spheroid orientations were
used in the computation, with size-dependent orientation angle distributions calculated
from Eq. (14) for several field strengths.

A plot of the computed degree of horizontal polarization, defined as –Q ≈
∑

K12, is
given in Fig. 10 as a function of the observation zenith angle, in comparison with the20

polarization excess observed on the nights of 3 and 4 May 2005 (for more details of
the observations see Sect. 2.1). It should be pointed out that the rise of the polar-
ization with zenith angle is due to both the vertical direction of preferential alignment
(i.e. no transverse alignment is seen when the observation path becomes vertical) and
airmass increase with zenith angle. A plot showing the fractional decrease in extinction25

due to particle alignment with respect to extinction due to non-aligned particles (in the
absence of electric field), defined as

∑
K11(0)/

∑
K11(E ) – 1, is shown in Fig. 11 as a

function of the field strength E for several zenith observation angles.
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3 Discussion

We have reported here high-sensitivity night-time polarimetric observations of an
aerosol plume over the island of La Palma. The aerosol was likely to have originated in
the western Sahel and Sahara desert and traveled along trajectories typically six days
in duration. The observations showed that transmitted starlight was polarized with5

slight excess in the horizontal direction for non-zenith observation directions. Such po-
larization can be expected in the presence of dust grains aligned predominantly with
their long axes vertical. Our modelling indicates that significant alignment is possible if
atmospheric electric field with a vertical gradient of the order of about 1 kV/m or more
is present. We have also modelled dichroic polarization due to partially aligned dust10

using the T-matrix method. The results agree with the observed profiles of polarization
as a function of zenith angle and indicate that during the observations in May 2005 the
field strength was likely to have been about 2 kV/m. It should be noted that the align-
ment effect is due to electric polarization of elongated grains, i.e. it does not depend on
the grains themselves being charged per se. Furthermore, the results in Sects. 2.3 and15

2.4 show that the presence of strong electric fields can be a consequence of the very
existence of a dust layer, automatically fulfilling the condition for alignment provided
that the optical depth is high enough and the layer is geometrically thin. Our estimates
based on the observed optical depth and size distribution of the La Palma SD layer
indicate that the required field strength could have been present provided that the SD20

layer was about 150 m thick, which is a possible but uncommon situation. However,
alignment within a charged dust cloud would not be subject to the geometrically-thin
layer constraint. Moreover, very large field strengths below dust clouds have been re-
ported elsewhere, reaching tens of kV/m (see Sect. 2.3). Therefore the presence of
charged dust seems a more likely explanation for the observed alignment. Since field25

strength data for aged dust clouds is not available, full evaluation of this hypothesis is
not possible at present.

This appears to be the first observation of aligned atmospheric aerosol. We have not
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been able to find any accounts of vertical alignment of atmospheric particles apart from
observations of ice crystals in clouds. Vonnegut (1965) provided an explanation for
abrupt changes observed in the visual appearance of the tops of thunderstorm clouds
by proposing that ice crystals were being aligned along the electric field. This suppo-
sition was confirmed mainly by polarized radar observations (Mendez, 1969; Hendry5

and McCormick, 1976; Krehbiel et al., 1996) and theoretical modelling (Weinheimer
and Few, 1987). The occurrence of vertical alignment is well correlated with lightning
activity (Prigent et al., 2005) – for a review see Caylor and Chandrasekar (1996). The
process we are reporting is similar, except that it involves smaller particles and weaker
electric fields. It is also significant that dust particles are more long lived than ice crys-10

tals, therefore more time is available for the field generation process, such as charge
separation, and the alignment itself to occur. Lastly, due to the weaker fields, thermal
and electric energies are comparable for smaller grains, which consequently align only
weakly.

How widespread can be the occurrence of dust alignment in the atmosphere? We15

have shown that the effect is strongly size dependent: electric alignment will domi-
nate over thermal fluctuations on the one hand, and aerodynamic alignment on the
other hand, for a narrow range of particle sizes, a phenomenon found previously for
ice crystals (Weinheimer and Few, 1987). The width of this size range increases with
the electric field but the range is centered on the maximum dimension of the particle20

of about 15µm (12µm equivalent diamter) – Fig. 9. While gravitational settling is likely
to remove larger particles over time (Maring et al., 2003), such particles are frequently
present in mineral dusts plumes associated with SD storms (Goudie and Middleton,
2001; Reid et al., 2003). For example, SD with the modal diameter of 9µm was ob-
served over England, with particles between 10 and 20µm contributing more than 20%25

of the coarse mode by volume (Pitty 1968), and the mean equivalent diameter of the
coarse fraction of dust entering the ocean off the west coast of Africa peaked in May
with a value of about 18µm (Ratmeyer, 1999). It appears that some atmospheric pro-
cess counteracts gravitational settling of larger atmospheric dust particles (Maring et
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al., 2003). In principle, aggregation of smaller particles may shift the size distribution
towards larger sizes. In our context it may be relevant that aggregation of aerosol par-
ticles can be enhanced by charging under some circumstances (Clement et al., 1995).

It is also possible that the settling is counteracted to some extent by the electric
field itself, provided that gravitational separation of positively and negatively charged5

particles is taking place, leading to the emergence of a dipole. In effect, particles with
opposite charges might then become coupled by attractive forces. Such coupling could
effectively increase the projected area of larger aerosol particles, slowing down their
settling. Examination of the size distribution in Fig. 5 shows that this ”electrostatically-
mediated aerodynamic breaking” could be quite significant due to the dominance of10

smaller particles in terms of projected area. Evaluation of this hypothesis is difficult at
present, in the absence of in situ measurements of electrical properties, but a rough
estimation can be attempted. To balance gravity a charge to mass ratio of 5×10−3 C/kg
is required in the postulated 2 kV/m field. The columnar mass of the La Palma aerosol
can be estimated from the AERONET retrievals to have been about 2.6×10−3 kg/m2 on15

4 May 2005 (most of which was within the coarse particle mode), implying a columnar
charge of ≈10−5 C/m2. For a 1000 m thick layer this translates into a charge density of
10−8 C/m3. In comparison, charge densities higher than this value have been observed
(Kamra, 1972), demonstrating that this hypothesis should be investigated further.

The modeling indicates that neither the aerodynamic nor the electric alignment de-20

pends strongly on the aspect ratio of the particle. Therefore even moderately non-
spherical particles such as SD grains can become aligned. Moreover, the dust above
La Palma may have been typical of Saharan dust episodes over a large geographical
area, since the dust outbreak itself was unexceptional, as evidenced for example by
the OMI aerosol index map for the 4 May (Fig. 2), and the back-trajectory modelling25

indicating that the dust plume was about six days old. For comparison, SD transport
to the Caribbean typically takes 5–7 days (Prospero and Carlson 1981) and to central
Europe as little as 3–5 days (Müller et al., 2003; Collaud Coen et al., 2003).

Optical depths exceeding that reported here, τ>0.3, are a common feature of SD
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episodes, even at locations distant from dust sources (Reid et al., 2003a; Müller et al.,
2003). For high values of τ the dust layer conductivity can drop to low values, in ac-
cordance with Eq. (7). In the limiting case of the conductivity being much smaller than
the free atmosphere value the full ionosphere-Earth electric potential difference would
appear between the top and the bottom of the layer. In this case Eq. (12) simplifies to5

E = U/∆z (18)

(without taking into account the topographic enhancement). If we take 1 kV/m as the
minimum field gradient and the average ionospheric potential U=280 kV (Mühleisen,
1971), SD layers less than about 300 m in thickness could show alignment, provided
that particles in the required size range are present. While thicker SD layers are more10

common, thicknesses of a few hundred meters have previously been observed over
Europe (Müller et al., 2003; De Tomasi et al., 2003; Papayannis et al., 2005), the
Azores (Chazette et al., 2001) and off Cape Verde Islands (Leon et al., 2003). A fur-
ther factor is that the atmospheric electric field can be significantly stronger outside the
time period when the polarization was measured at La Palma (mostly 22 to 5 h UTC)15

because of the diurnal cycle of the ionospheric potential, which shows a minimum at
this time (Roble and Tzur, 1986). Therefore, we can conclude that selective particle
alignment due to reduced conductivity could be a feature of SD layers in some circum-
stances. At the same time, alignment due to fields within charged dust layers may be
more widespread.20

In addition to being detectable through measurements of polarized extinction, dust
alignment is very likely to influence angular scattering, both polarized and unpolarized,
from mineral dust layers and so can have strong effect on remote sensing retrievals,
as represented for example by almucantar measurements using sun photometers and
angle-dependent polarimetry. While these issues are too complex to be examined here,25

our results already indicate that the alignment can significantly alter the optical depth
of the dust layer, effectively making it anisotropic. Figure 11 shows that for the case
reported here the optical thickness in the vertical direction can be expected to decrease
due to the alignment by as much as 10% at the wavelength of 780 nm. From the ray
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optics point of view, this phenomenon can be likened to a “Venetian blind”, whereby
grains aligned preferentially in the vertical direction tend to pass through more solar
radiation due to reduced cross-section. Moreover, while the alignment makes the layer
anisotropic, the reduction in optical depth is not very strongly dependent on the angle
of incidence for low solar zenith angles: for example, the decrease corresponding to5

the 20◦ zenith angle is still 8%. Hence the influence would not be limited to the lowest
latitudes or the time around noon, although that is when the extinction would be most
strongly affected.

In addition to random orientation that can be expected of smaller particles, particles
above the optimum size range for electric alignment may align with their long axis10

horizontal (Sassen and Benson, 2001; Weinheimer and Few, 1987). This could, in
principle, cancel or even reverse the sign of the observed polarization, as shown by
the negative values in Fig. 10 for E=800 V/m. However, the larger particles would be
present in most cases in the tail of the dust size distribution (Fig. 5), and as such would
be likely to contribute less to the overall extinction than the electrically aligned ones,15

provided that the field is sufficiently strong.
We should examine other possible factors influencing the postulated presence of

strong electric fields over La Palma. One such factor is surface topography. As dis-
cussed in Sect. 2.3, fields over mountaintops can be enhanced by a factor of two or
so. Furthermore, a reduction in the thickness of the aerosol layer due to orographic20

flow could augment the field in accordance with Eq. (18). Over flat terrain these effects
would not be present, potentially reducing the strength of the alignment originating from
a depletion of atmospheric conductivity. However, surface topography is less likely to
have influence on fields within charged aerosol layers.

To evaluate the factors discussed here, future high-sensitivity polarimetric observa-25

tions should be carried out at low altitude as well as at mountaintop locations and to
include lidar as a means of vertical profiling of aerosols. It is also highly desirable to
make simultaneous measurements of electrical properties of the atmosphere, includ-
ing field gradient and current density. Field gradient measurements in particular should
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also be carried out from an airborne platform. Such observations will make it possible
to estimate the influence that dust alignment may have on remote sensing retrievals
and the radiative balance of the atmosphere.

4 Conclusions

Optical polarimetry observations during a Saharan dust episode showed dichroic ex-5

tinction, indicating the presence in the atmosphere particles aligned preferentially in the
vertical direction. It is postulated that the observed dust alignment was caused by an
electric field within the dust layer. The minimum field required to partially align slightly
nonspherical ∼10–20µm particles is of the order of 1 kV/m, although some effects
may be observable for even smaller field strengths. For the observations in question10

the field strength is estimated at 2 kV/m. The field may have been present because
of the depletion of atmospheric conductivity due to the dust. However, as shown by
Fig. 6, for sufficient field strengths to be present the dust layer needs to be rather thin –
100–200 m – which is possible but not very likely for the aged dust cloud in question. In
contrast, fields accompanying charged dust clouds appear to be stronger, and could in15

principle produce the required alignment. In addition to being detectable through polar-
ization, the alignment significantly alters the optical depth of the dust layer, decreasing
it by about 10% in the vertical direction for the case reported here. This reduction is
dependent on the angle of incidence because of the induced anisotropy of the layer,
but not very strongly. It is also conjectured that the existence of the electric field may20

provide a mechanism explaining the hypothetical process which appears to counteract
gravitational settling of larger particles in SD layers (Maring et al., 2003).

Because the dust episode did not seem to be exceptional in meteorological terms,
and the properties of the dust cloud were likely to be typical of a large geographic area,
the alignment may be a common feature of Saharan dust layers. However, questions25

concerning the precise origin, magnitude, extent and influence of the phenomenon in-
vestigated here will remain unresolved until more systematic polarimetric observations,
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ideally accompanied by lidar sounding and measurements of electrical properties, can
be carried out.
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Fig. 1. 10-day backward airmass trajectories ending at 00:00 UTC on 4 May 2005, computed
for final altitudes of 2500, 3000 and 3500 m. The upper panel shows geographical location and
the lower one the altitude above ground level in meters.
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Fig. 2. OMI Aerosol Index for 4 May 2005.
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depth, and OMI Aerosol Index for a 5 by 5 degree square centered on La Palma.
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Fig. 4. Example columnar aerosol size distributions retrieved from the sun photometer at Santa
Cruz, just before, during and just after the dust episode. The distributions are in terms of particle
volume, i.e. dV /d ln(r), where r is the radius of the volume-equivalent sphere.
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Fig. 5. As Fig. 4 but the columnar size distributions are in terms of the projected area for equal
width size bins (dA/dr ).
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Fig. 6. Electric field gradient as a function of aerosol layer thickness for optical depth of 0.31,
calculated from Eq. (12) with the topographic enhancement factor of two.
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Fig. 7. Electric field gradient as a function of aerosol optical depth calculated from Eq. (12) for
an aerosol layer 400 m thick.
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Fig. 8. Normalized probability distribution function of orientation angle of prolate ellipsoids with
a long axis of 10µm, aspect ratio of 1.5 and density is 2.6 g/cm3, falling under gravity and
subjected to a vertical electric field (strength shown in the legend).
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Fig. 9. Mean orientation angle of prolate ellipsoidal particles with aspect ratio a=1.5 and density
is 2.6 g/cm3, falling under gravity and subjected to a vertical electric field (strength shown in the
legend).
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Fig. 10. Horizontal polarization excess of the transmitted flux, in parts per million. Open
symbols and lines show computed polarization, plotted as a function of the observation zenith
angle for several electric field strengths, as given in the legend. Closed symbols show observed
polarization excess on the nights of 3 and 4 May 2005 – the error bars on the observed values
are typically ±1.8 ppm.
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Fig. 11. Fractional decrease in extinction due to particle alignment as a function of the field
strength, with respect to extinction for randomly oriented particles, for several zenith observa-
tion angles. The wavelength is 780 nm.
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